Stiffening of the Extrapulmonary Arteries From Rats in Chronic Hypoxic Pulmonary Hypertension.
نویسندگان
چکیده
Changes in the compliance properties of large blood vessels are critical determinants of ventricular afterload and ultimately dysfunction. Little is known of the mechanical properties of large vessels exhibiting pulmonary hypertension, particularly the trunk and right main artery. We initiated a study to investigate the influence of chronic hypoxic pulmonary hypertension on the mechanical properties of the extrapulmonary arteries of rats. One group of animals was housed at the equivalent of 5000 m elevation for three weeks and the other held at ambient conditions of ~1600 m. The two groups were matched in age and gender. The animals exposed to hypobaric hypoxia exhibited signs of pulmonary hypertension, as evidenced by an increase in the RV/(LV+S) heart weight ratio. The extrapulmonary arteries of the hypoxic animals were also thicker than those of the control population. Histological examination revealed increased thickness of the media and additional deposits of collagen in the adventitia. The mechanical properties of the trunk, and the right and left main pulmonary arteries were assessed; at a representative pressure (7 kPa), the two populations exhibited different quantities of stretch for each section. At higher pressures we noted less deformation among the arteries from hypoxic animals as compared with controls. A four-parameter constitutive model was employed to fit and analyze the data. We conclude that chronic hypoxic pulmonary hypertension is associated with a stiffening of all the extrapulmonary arteries.
منابع مشابه
Hypercapnia attenuates hypoxic pulmonary hypertension by inhibiting lung radical injury.
Chronic lung hypoxia results in hypoxic pulmonary hypertension. Concomitant chronic hypercapnia partly inhibits the effect of hypoxia on pulmonary vasculature. Adult male rats exposed to 3 weeks hypoxia (Fi(02)=0.1) combined with hypercapnia (Fi(C02)=0.04-0.05) had lower pulmonary arterial blood pressure, increased weight of the right heart ventricle, and less pronounced structural remodeling o...
متن کاملPulmonary vascular mechanics: important contributors to the increased right ventricular afterload of pulmonary hypertension.
Chronic hypoxia causes pulmonary vasoconstriction and vascular remodelling, which lead to hypoxic pulmonary hypertension (HPH). Hypoxic pulmonary hypertension is associated with living at high altitudes and is a complication of many lung diseases, including chronic obstructive pulmonary disease, cystic fibrosis and obstructive sleep apnoea. Pulmonary vascular changes that occur with HPH include...
متن کاملHyperoxia and recovery from hypoxia alter collagen in peripheral pulmonary arteries similarly.
Chronic hypoxia causes pulmonary hypertension, the mechanism of which includes altered collagen metabolism in the pulmonary vascular wall. This chronic hypoxic pulmonary hypertension is gradually reversible upon reoxygenation. The return to air after the adjustment to chronic hypoxia resembles in some aspects a hyperoxic stimulus and we hypothesize that the changes of extracellular matrix prote...
متن کاملEffects of prenatal hypoxia on pulmonary vascular reactivity in chickens prone to pulmonary hypertension.
Among chickens, meat-producing broiler strains are highly prone to develop severe pulmonary hypertension (PH) that is accompanied by endothelial dysfunction in the conduit extrapulmonary arteries. We hypothesized that exposure to chronic prenatal mild hypoxia would accelerate PH and endothelial dysfunction in smaller intrapulmonary arteries from broiler chickens. Fertilized broiler and layer (W...
متن کاملCorrelation of inhaled nitric-oxide induced reduction of pulmonary artery pressure and vascular changes.
The purpose of the present study was to determine the relationship between hypertensive pulmonary vascular remodelling and the changes in mean pulmonary artery pressure (mPAP) during low-dose nitric oxide (NO) inhalation. Rats were exposed to chronic hypobaric hypoxia (air at 50.5 kPa (380 mmHg), 10% oxygen, for 5-29 days) to induce chronic pulmonary hypertension (PH) with pulmonary vascular st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of research of the National Institute of Standards and Technology
دوره 113 4 شماره
صفحات -
تاریخ انتشار 2008